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ABSTRACT 

Circular symmetry is defined for ordered sets of n real numbers: 
(Y)=(Yl,"',Yn). Let f(x) be non-decreasing and convex for x ~ 0 and let 
(y) be given except in arrangement. Then l~= lf([ Yi -Yt + 1 ]) (where Yn + 1 ~ Y l )  

is minimal if (and under some additional assumptions only if) (y) is arranged 
in circular symmetrical order. 

The problem considered here arose in connection with a paper by B. Schwarz [2]. 
For  the sake of  completeness we start with a definition given there which differs 
slightly from the definition given in the book of Hardy, Littlewood and P61ya 

[1, Chapter X]. 
An ordered set ( a ) =  ( a l , " ' , an )  of n real numbers is called symmetr ica l ly  

decreasing if  either 

(1) a l < a n < a 2  < < . . . <  < = = = a n - I  = a [ ( n + 2 ) / 2 ]  

o r  

(2) a, < a 1 < an_ 1 <= a 2 ~ ... <= attn+l)/z ] 

holds. For a given set (y) = (Yl, "",Y,,) there exist, in general, two distinct sym-  
metr ical ly  decreasing rearrangements.  The rearrangement ordered as in (1) is 

denoted by ( y - )  = (y~-, .--, y~ ) so that 

(1') Y-I <= Y~ <= Y'£ <= Y~-I  <= "'" <= Y-~,+2)/z]; 

The other symmetrically decreasing rearrangement is denoted by 

( -y )  = ( - y . . . . , - y ~ ) :  

(2') -Yn < -Yl =< -Yn-1 =< -Y2 -<-- "'" =< -Yt(,+I)/21. 

We add the following definitions. A circular rearrangement  of  an ordered set 
(Y) = (Y~, " ' ,  Yn) is a cyclic rearrangement of (y) or a cyclic rearrangement followed 
by inversion. For  example, the circular rearrangements of  the set (1,2, 3,4) are 

the sets 

Received January 17, 1963 (Revised April 28, 1963). 
* Sponsored by the Mathematics Research Center, United States Army under Contract 

No. DA-11-022-ORD-2059, University of Wisconsin, Madison. 

22 



A RESULT ON R E A R R A N G E M E N T S  23 

(1,2,3,4),  (2,3,4;1), (3,4,1,2),  (4,1,2,3),  

(4,3,2,1),  (1,4,3,2),  (2,1,4,3),  (3,2,1,4).  

An ordered set (y) = (Yl, "", Y,,) of n real numbers is arranged in circular 
symmetrical order or is of circular symmetry if  one of its circular rearrangements 
is symmetrically decreasing. It follows that the sets (y -), ( - y )  and (a), satisfying 
(1) or (2), are of  circular symmetry, and so is the set (b) = ( b l , ' " ,  b~) if either 

(3) bl <= b2 <- bn < b3 <= bn-1 < ""< b[(n+3)/2] 

o r  

(4) b2 < bl < ba <= bn < b4 < b,,-1 < "'" < b[(n+4~/2] 

holds. 
Sets of circular symmetry with a given set of n elements can be visualized as 

follows. Let c i, i = 1,-.., n be the n given numbers and assume that c 1 < c2 <.." < c,. 
Place these n numbers at n distinct points of a circle according to the following 
rule: cl may be put at any point;  c 2 is a neighbor of c~ ; c 3 is the other neighbor 
of  c~ ; c~ is a neighbor of c2 ; c5 is a neighbor of ca, etc. (We could also start with 
the largest element c,,.) The figure shows the construction for n = 8. The sets of 
circular symmetry are obtained by starting at any point and going in clockwise or 
counter-clockwise direction over the circle. 

C 8 

Ct 

Figure 

C4 

We state now our result. 

THEOREM. Let the ,function f ( x )  be non-decreasing and convex for  x >__ O. 
Let the set (y) of n real numbers be given except in arrangement. Then 

n 

(5) ~ ' f ( l Y , -  Y,+I 1) 
~=l 

(where Yn+ i = Yi) is minimal if (y) is arranged in circular symmetrical order. 
Moreover, i f  the convexity o f f ( x )  is strict and no three elements of (y) have the 
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same value, then (5) attains its minimum only if (y) is arranged in circular 
symmetrical order. 

Proof. (5) is clearly invariant under all circular rearrangements. The first 
assertion of the theorem is thus equivalent to 

(6) ~ f ( I Y , - Y , + I ] )  > ~ f(IYF -y7+~]). (y,.+l =Yl, Yn'-+l= Yl), 
i = 1  i = 1  

where ( y - ) =  (y~,.. . ,y~)is the symmetrically decreasing arrangement of (y) 
satisfying (1'). To prove the second assertion of the theorem we have to show 
that equality holds in (6) only if (y) is of circular symmetry. 

The proof proceeds by induction. For n = 2 and n = 3 every set is of circular 
symmetry and (5) is clearly invariant under all rearrangements, hence the theorem 
holds trivially for those n. 

We now assume the validity of the theorem for sets of n - 1 numbers and show 
that this implies its validity for sets of n numbers. Let (y) = (Yl," ' ,  Y,) be such a 
set. Without loss of generality we may assume that 

(7) 0 = Yt <-- Yi, i = 2, . . . ,n. 

(1') and (7) imply that for (y - )  = (y ~-, .-., y~) 

(8) 0 = y~- < YT, i = 2,.. . ,  n. 

We define the set (x) = (xl, "",xn-1) of n - 1 numbers by 

(9) x~= y~+l, i = 1 , . . . , n -  1, (x~ >= 0). 

Similarly, (x') = (x~, ---, x',_ 1) is defined by 

(10) x'i = Y~-+ 1, i = 1,-.., n - 1, (x[ > 0). 

(7) and (9) imply 

(11) ~-,f(ly,-y,+xl)= 
i = 1  i = 1  

n - 1  

= ~ : f ( I  x , - x , + l  I) +f(xl) + f ( ~ - l )  -f(Ixl-xn-i [),(y.+l = y , - - 0 ;  x~=xO. 
i = 1  

Similarly, it follows from (8) and (10) that 

~f(ly7 - y ~ l ] )  = 
i=I 

We define 

n - I  

Z f(lxl - xi+~ l) +f(x;) +f(x~_ ~)-f(lx~ - x'_t l), 
i=I 

(y;+~ = y/- -- o; x,', = xD. 
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(13) g(s,t) = f ( s )  + f ( t )  - J ( l s  - t I); 

(11)-(13) give 

Z f ( I y , -  y ,+l l ) -  ~ f ( l y ;  - y-+~t) 
i = 1  i = 1  

(14) 
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s > 0 ,  t > 0 .  

n - 1  n - I  

= Z f ( l x , -  x,+~ 1) - E f ( l x "  - x'+~ l) + g(xl,x,,_O - g(xl,x'-O. 
i = 1  i = l  

(7)-(10) imply that (x') is a rearrangement of(x). (1') and (10) give 

n t 
(15)  ' < ' _ x .  < . . . <  • Xn-1 = X 1  - -  - 2  ~-- ~-- X [ n [ 2 ]  

Hence, by (2), (x') is of circular symmetry (and indeed (x') = ( -x) )  and it follows 
by the assumption of the induction that 

n - 1  n - 1  

(16) ] ~ f ( l x , - x , + , [ )  > ] ~ f ( l x ~ - x ; + , [ ) ,  ( x , = x a ,  x' ,=x'O. 
i = 1  i = 1  

f ( x )  is, by assumption, non-decreasing and convex for x > 0. This implies (and is 
equivalent to the fact) that g(s , t )= g(t,s), defined by (13), is a non-decreasing 
function o f s  and t, s > 0, t > 0. (15) shows that x',-i  and X'l are the two smallest 
numbers of (x). It follows that 

(17) g(xl, x._ 1) > g(x[~ x'_ 1). 

(14), (16) and (17) imply (6) and we thus proved the first assertion of the theorem. 
To prove the second assertion we assume that ( y ) =  (Yl," ' ,Y.)  takes every 

value at most twice. It follows that the same holds for ( x ) =  (xa,- . . ,x ._l)  and 
that this set takes the value 0 at most once. We also assume that the convexity of 
f ( x )  is strict (and it thus follows that the non-decreasing function f ( x )  is strictly 
increasing). This implies that g(s, t) is a strictly increasing function of s and 
t(s > O, t > 13); g(s, 0) = g(0, t) = 0; g(s, t) > O(s > O, t > 0). 

Assume now that equality holds in (6); i.e. 

(6') ~ f ( [ Y , - Y , + I [ )  = ~ f ( l Y ~ - - Y ~ x [ ) ,  (Y ,+t=Yl=Y, '~+I=Y-I  =0) .  
i = I  i = 1  

(6'), (14), (16) and (17) i m p l y  

n - 1  n - 1  

(16') Z/(Ix,-x,+ll)= Z/(Ixl-x;+,l), (x.=xl, x'--x~) 
i=l  i = 1  

and 

(17') g(xl, x._ 1) = g(x~, x '_ 1). 

As shown above, the rearrangement (x') of (x) is of  circular symmetry. (16') ira- 
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pries thus by the assumption of the induction, that (x) itself is of circular symmetry. 
x~ and x',_ 1 are (by (15)) the two smallest numbers of(x') .  (17') and the properties 
of g(s, t) imply therefore that either a) xx and x , _  1 are both positive and are the 
two smallest numbers of (x); or b) either xi or x,_ ~ is equal to zero, but not both. 

At this point it is convenient to use (9). The set of n - 1 non-negative numbers 
(Y2, "", Y,) is of circular symmetry and does not take any values more than twice. 
In case a) Yz and y,  are the smallest numbers of this set and they are positive. 
It follows that this set satisfies 

(0 < )yz  <= y ,  < Y3 < Y, , - i  < "'" < Y[t,,+3)/2 (18) 

or  

(19) (0 < )Yn <= Y2 <~ Yn-t  ------- Y3 =< "'" -<- Y[(n+ 2)/2]" 

(Note that we used the fact that the smallest value is taken at most twice.) In 
case b) we know that either Y2 ---- 0 or y,, = 0 but not both, and that no other 
number of the set (Y2, "",Yn) of circular symmetry vanishes. Hence, one of the 
following four cases has to occur: 

(18 ' )  (0 = )Y2 < Y, <= Y3 <-- Yn-1 <= "'" <= Y[(n+3)/2], 

(20) (0 = )Y2 < Y3 =< Yn ----< Y4 ----< "'" ----< Y[(n+4)/2], 

(t9) '  (0 = ) y ,  < Y2 < Y , - 1  <-- Y3 <= "'" <-- Y[(n+2)/2], 

(21) (0 = )Yn < Yn-1 ----< Y2 ----< Yn-2  <---- "'" "< Y[(n+l)/2]" 

If  we now complete the set (Y2, "", Yn) to a set of n elements by adding the term 
Yt = 0 in the first place, then it is easily seen that in each case also the new set 
(Yl,'",Y~) is of circular symmetry. (For (18) and (18') see (3); for (19) and (19') 
see (1); for (20) see (4), and for (21) see (2)). This completes the proof of the 
theorem. 

We now show that all assumptions of the theorem are necessary. Consider 

e.g. the sets 

(22) (1, 3, 4, 2) and (1, 2, 3, 4). 

Here (and also in (23) and (24) below) the first set is of circular symmetry but the 
second is not. The sum (5) becomes, respectively, 2f(1) + 2f(2) and 3f(1) +f(3) .  
As there are increasing functions for which 2f(2) > f (1 )  + f (3 )  we cannot drop 
the assumption of convexity. Similarly, for the sets 

(23) (1,3,5,4,2) and (1,2,4,3,5), 

The difference of the sums (5) becomes f(2) - f ( 4 ) ,  and we thus need the assump- 
tion tha t f (x)  is increasing. Using the sets (22) and the functionf(x)  = x, it follows 
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that we have to assume strict convexity for the second part of the theorem. Finally 
for the sets 

(24) (1,2,3,4,2,2) and (1,2,2,3,4,2),  

the sums are, for anyf (x) ,  equ~.l; hence it is necessary to assume that no three 
elements of (y) have the same value. 

An analysis of  the proof  shows that if in a set (y) -- (Yl , ' " ,  Y,,) one or several 
values are taken more than twice, then - -  under the stricter assumption on f ( x ) - -  
(5) becomes minimal for exactly those rearrangements of (y) which are con- 
structed by the following rule: Let (z) = (z 1,'", Zm), m < n, have the same elements 
as (y) except that, if (y) takes a value more than twice, then (z) contains only 
two elements having this value. Arrange (z) in circular symmetrical order and 
obtain the minimizing rearangements of (y) by inserting the additional n - m 
elements next to elements having the same value. 

The theorem yields the following result concerning linear arrangements. 

COROLLARY. Let the function f (x)  be non-decreasing and convex for x>O. 
Let the set (y) of n non-negative numbers be given except in arrangement. Then 

n- -1  

(25) ]~ If(Y,) + f(Yi+ 1) - f ( [ Y ,  - Y,+ a I)] 
i = 1  

is maximal if (y) is arranged in symmetrical decreasing order. Moreover, if 
the convexity o f f (x)  is strict and if all the elements of (y) are positive and no 
three of them have the same value, then this maximum is attained only if (y) 
is symmetrically decreasing. 

P r o o L  

(26) 

n - 1  

['f(Y') +f(Y'+ ,) - f ( l Y ,  - Y,+ i I)] 
i = l  

n II 

= 2 ~ f ( y , )  - ~] f(lY, - Y , - I  l )  - [ f ( Y , )  + f ( Y . )  -f(lY~ - Y.  l)]. 
i = 1  i = 1  

" i As ~i= lf(Yi) s invariant for all rearrangements of (y), (13) and (26) give 

(27) 

n - 1  n-i 

2 g(YT,YT+l)- ~, g(Yi, Yi+l) 
i = 1  i = l  

= ~ f(lY,- y,+l l) - ~f(lYY - y[+l l) + g(yl ,y,)  - g(yly'~ ), 
i = 1  i = 1  

y~- and y~- are (by (1')) the two smallest elements o f (y) ;  hence 
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(28) g(y~, y.) > g(y'~, y~). 

(6), (28) and (27) imply 

n - 1  n - 1  n -1  

(29) ~, g(Yi, Yi+l) < ~, g(YT,Yi'+x)= ~, g(-Yi,-Yi+I), 
t=1 i=1 i=1 

and thus we have proved the first assertion of the corollary. 
If y~ > O, i = 1, ..., n, then it follows from the stricter assumptions onf(x)  that 

(28') g(ya, y,) = g(y~, y; ) 

implies that Yl and y. are the two smallest elements of (y). By the second part of 
the theorem it also follows that 

(6') ~ , f ( l y , - y , + , l )  = ~ f ( ]y i -y i -+al )  
i=1 i=1 

implies that (y) is of circular symmetry. Under the assumptions of the second part 
of the corollary it thus follows (using also (6), (28) and (27)) that (25) becomes 
maximal only if (y) is of circular symmetry and if y,  and y. are its two smallest 
elements. But this implies (y) = (y- )  or (y) = ( -y )  and the proof of the corollary 
is complete. 

We now show also for the corollary that all its assumptions are necessary. 
Note that in (22) and (24) (and also in (30) and (31) below) the first set is sym- 
metrically decreasing but the second is not. For the sets (22) the sum (25) becomes 
respectively, - f ( 2 )  + 2f(3) + 2f(4) and - 2f(1) + 2f(2) + 2f(3) + f(4). As 
there are increasing functions for which f ( 4 ) +  2 f (1 )<  3f(2) we cannot drop 
the assumption of convexity. For the sets 

(30) (1, 3, 2) and (3, 1, 2) 

the difference of the sums (25) becomes f ( 3 ) - f ( 1 ) ,  and we thus need the as- 
sumption that f(x) is increasing. Using again the sets (22) and the function 
f(x) = x, it follows that we have to assume strict convexity for the second part of 
the corollary. The sets (24) prove again that it is necessary to assume that no 
three elements of (y) have the same value and, finally, the sets 

(31) (0,2, 1) and (0, 1,2) 

show that we have to assume Yi > 0 for the second part of the corollary. 
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